

1

NEX Installation and Upgrade Guide for an

ECP/EDX-endpoint in NEM

Version: 4.16.0.5

Date: 30.10.2025

2

1 DOCUMENT HISTORY 3

2 TERMINOLOGY 4

3 THE BIG PICTURE 6

4 PREPARATIONS 7

5 INSTALLATION/UPGRADE OF ECP + IB ON WINDOWS 10

6 INSTALLATION/UPGRADE OF ECP + IB ON LINUX 12

7 INSTALLATION/UPGRADE OF ECP + IB USING DOCKER IMAGE 13

8 INTERNALBROKER/ARTEMIS SETUP (FOR ALL OS INSTALLATIONS) 15

9 ECP SETUP (FOR ALL OS INSTALLATIONS) 19

10 INSTALLATION OR UPGRADE OF EDX-TOOLBOX ON WINDOWS 29

11 INSTALLATION OR UPGRADE OF EDX-TOOLBOX ON LINUX 30

12 INSTALLATION OR UPGRADE OF EDX-TOOLBOX USING DOCKER IMAGE 31

13 EDX SETUP (FOR ALL OS INSTALLATIONS) 33

14 APPENDIX 41

3

1 Document History

Version Date Changes

4.12.0.0 10/1-2024 - Updated document to support ECP v4.12 and EDX v1.13

4.12.0.1 14/3-2024 - Updated document with properties to support monitoring++ in
chapter 9.1.1 and chapter 13.1. Made minor clarifications
elsewhere.

4.12.0.2 25/4-2024 - Minor (but critical) fix for the ecp.properties (Prometheus ->
prometheus)

4.12.0.3 26/9-2024 - Updated ConnectivityCheck-chapter (14.1) and links to
troubleshoot-document (chapter 14.3)

4.14.0.0 8/11-2024 - First version to support ECP v4.14 and EDX v1.14, with Artemis. A
new chapter has been introduced for Artemis configuration
setup.

4.14.0.1 13/11-2024 - Review of Docker-related chapters

4.14.0.2 20/11-2024 - Review by NEX completed

4.14.0.3 10/01-2025 - Minor change in coloring of the AMQP-configuration

4.14.0.4 14/04-2025 - Fixed a missing xml-header in bootstrap.xml (chapter 8.1.1)
- Added some properties in ecp.properties (chapter 9.1.1) and

edx.properties (chapter 13.1)

4.16.0.0 19/08-2025 - First version to support ECP v4.16. This is a minor change from
4.14 – only some chapter numbers have changed.

4.16.0.1 20/08-2025 - Improved chapter 5 and 6 on how to perform Upgrade

4.16.0.2 21/08-2025 - New info about requirements for Docker-version (chapter 7)

4.16.0.3 11/09-2025 - A change in bootstrap.xml default config, added Note2.

4.16.0.4 10/10-2025 - Important sub-chapter on Windows 2019 and TLS v1.3 (chapter
5 and 10)

4.16.0.5 30/10-2025 - Update of SVK information in chapter 4.2.3
- Reformulation of the text in first paragraph of chapter 9.4.2

4

2 Terminology
Read later - this is a reference for acronyms/names used in this installation guide. Defined words are

in bold font in the "Long" column.

Short Expanded Long

AG ECP/EDX Administration
Guide

The ECP/EDX administration guide for ECP made by ENTSO-e

AMQP Advanced Message Queuing
Protocol

A protocol/standard developed in 2014 by OASIS for reliable
(persisted) message communication.

Artemis Apache ActiveMQ Artemis A queue-broker that supports AMQP 1.0. The broker is used
within the ECP/EDX-endpoint and the Central/Network Broker is
basically an Artemis-broker with a small ECP-security plugin.

BA Business Application A "normal" application outside ECP, communicating through ECP
with other BAs. The BA must connect with an EDX-toolbox to
send/receive messages from the network.

Broker Central/Network Broker The central broker in an ECP-network is directly reachable for all
ECP-endpoints and all messages in the network are sent to and
retrieved from this broker. It supports AMQP(S). In addition to the
central broker, each ECP-endpoint and EDX-toolbox also have an
"internal broker" (same type of broker) for message handling.

Component Component A component is either an endpoint, a broker or a component-
directory.

CD Component Directory An ECP-component/server, maintaining information about all ECP-
endpoints, Broker and SC. This is like the phone book of an ECP-
network.

EC Endpoint Code These codes are provided by the TSO and identifies your particular
Endpoint and is stored in the CD. The code is an EIC-code of type
V, sometimes called "V-code".

ECP Energy Communication
Platform

A platform developed for ENTSO-E, by Unicorn, according to
MADES 2.0 specification – intended to provide secure and reliable
messaging between the actors (TSOs and others) in the energy
sector. The platform consists of EDX-toolbox, ECP-endpoints,
Broker, Component Directory (CD) and Service Catalogue (SC).

ECP-endpoint ECP-endpoint A specific component/server in the ECP-network, responsible for
sending/receiving messages to/from the central Broker.

EDX-toolbox EDX-toolbox A "front" to the ECP-endpoint, logically a part of the same
endpoint. EDX offers a richer set of interfaces for a BA to connect
to. EDX has a Service concept which allows for more advanced
routing of messages and addressing of endpoints.

Endpoint Endpoint An endpoint is the "logical endpoint" – a combination of both the
ECP-endpoint and the EDX-toolbox.

EO Endpoint Operator The party that operates an Endpoint and has the technical
communication with the ECP/EDX-network and operational
communication with the TSO.

ENTSO-e European Network of TSOs An organization of TSOs

HA High Availability A term used for a database-setup, with multiple databases in a
cluster. This is not part of the regular setup of ECP-endpoints, but
it is possible to use MySQL or MSSQL for such a setup.

Hawtio Hawtio A monitoring software – access it on ECP-endpoint and EDX-
toolbox on /hawtio on whichever port your webserver is running.
You can browse your internal broker queues.

IB Internal Broker The ActiveMQ Artemis is used as the broker to support ECP/EDX-
endpoint. Each endpoint will have one IB installed and the IB will
run as a separate process in the OS, alongside EDX and ECP. All
endpoints will thus have 3 processes running.

IG ECP/EDX Installation Guide The ECP/EDX installation guide for ECP made by ENTSO-e/Unicorn

MA Market Actor The actor utilizing the data offered through and ECP/EDX-
connection. In simple terms: "the business partner". A Market
Actor can consist of several legal entities.

MADES Market Data Exchange
Standard

A specification developed by ENTSO-E describing a communication
system between actors in the energy sector.

5

NEM Nordic ECP-network for
Market Actors

NEM is the combined ECP network of Statnett, SvK, Fingrid and
Energinet, using Internet as the carrier.

NEX Nordic ECP/EDX Group The governing group of ECP/EDX in the Nordics, with
representatives from Statnett, SvK, Fingrid and Energinet

SC Service Catalogue An ECP-component/server which keeps information about which
endpoints consume/provides certain services. Without
registration here, an EDX-toolbox cannot access services.

TSO Transmission System
Operator

Responsible for the distribution of energy (electricity or natural
gas), in an area/country.

UG ECP/EDX Upgrade Guide The ECP/EDX upgrade guide for ECP made by ENTSO-e/Unicorn

6

3 The big picture
The goal of ECP is to provide secure and reliable messaging between participants in the energy

sector, from one Business Applications (BA) to another. The big picture is shown below:

The drawing aims at answering the following questions you might have:

• What components exists in the ECP and which must a particpant in the network install?

• Which ports must be opened in which direction and in which firewall?

• What is the general purpose of the various components in ECP?

• How does the messages flow in the system and how is the logical flow?

Allthough a picture says more than a thousand words, a little explanation might still be in order:

• The messages flow from one BA to the other through a number of steps, follow the blue line

for "message traffic)

• All componets are connected to the CD, to retrieve information about rest of the network

• An endpoint should be installed in a protected network zone, no firewall openings into the

endpoint is necessary (all traffic is outbound)

7

4 Preparations

4.1 Download software & binaries
• Go to https://ediel.org/nordic-ecp-edx-group-nex/market-actor-onboarding/ and find links to

software and documentation

o Download "Installation Package" for ECP v4.16.0

o Download "Installation Package" for EDX v1.16.0

o Download "Docker Binary" if you need these for container-based installation

o Within the 2 first downloads you'll find official documentation, but the

documentation is not tailored for NEM Market Actors and can be voluminous. You

will need the following 9 documents in order to complete this installation:

▪ ECP/EDX Installation Guide (IG) – will be referenced later in this doc

▪ ECP/EDX Upgrade Guide (UG) – will be referenced later in this doc

▪ ECP/EDX Administration Guide (AG) – advanced configuration, may not be

necessary

▪ ECP/EDX Release Notes (RN)

▪ EDX User Guide (USG) – how BA connects to EDX

o There are more resources on ENTSO-e website, especially lot's of training videos

found here: https://www.entsoe.eu/ecco-sp/training-videos/. These videos are not

necessary to watch but are a repository for various question you may come across

later.

4.2 Retrieve Endpoint Code (EC) and Registration Keystore

4.2.1 Statnett

• Go to https://ediel.org/nordic-ecp-edx-group-nex/nex-statnett/ and find links to "terms of

use". Scan and sign it, one per company (not one per endpoint).

• Contact mailto:ecp@statnett.no with this information:

o Company name

o Signed "terms of use"

o Which network you want to connect to (test or production)

• In return you'll get information you need later on:

o Registration keystore (jks-file)

o Endpoint code (EC)

4.2.2 Energinet

Go to https://en.energinet.dk/Electricity/Electricity-market/How-to-get-started-with-ECP/ to get

information about the process.

4.2.3 SvK
Go to https://www.svk.se/aktorsportalen/it-systemsupport/kom-igang-med-ecp/ to get information
about the process.

4.2.4 Fingrid
Request the Endpoint code (EC) for your ECP endpoint from lio@fingrid.fi.

4.3 Software requirements
• OS must be Windows Server 2019/2022, RHEL 8/9 or Oracle Linux 8/9.

https://ediel.org/nordic-ecp-edx-group-nex/market-actor-onboarding/
https://www.entsoe.eu/ecco-sp/training-videos/
https://eur04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fen.energinet.dk%2FElectricity%2FElectricity-market%2FHow-to-get-started-with-ECP%2F&data=05%7C01%7Cmorten.simonsen%40Statnett.no%7C31051eaa128d4829293608db05d2f04f%7Ca8d61462f25244b2bf6ad7231960c041%7C0%7C0%7C638110175766741510%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=m71rauMQUHp%2FU94nlco4mfV7r4jw0SPFiPOC7ijRTnw%3D&reserved=0
https://www.svk.se/aktorsportalen/it-systemsupport/kom-igang-med-ecp/

8

• We recommend running a single EDX & ECP on a standalone1 server to avoid port-conflicts.

4.4 Hardware requirements (see ECP/EDX IG for more information)
 NEX Recommendation (1000*X msg/h) ENTSO-e Rec. (1000s msg/h)

 ECP + EDX (same host) ECP EDX

CPU X Cores 4 Cores 2 Cores

Memory 12+X GB 8GB 4GB

Disk 100+10*X GB 40 GB 100 GB

4.5 Firewall configuration
Look at "the big picture" (chapter 3) to identify which ports you need to open. The arrow on the

traffic denotes from where the traffic is initiated. The table below summarizes the information and

provide specific hosts which are essential for the operation of your endpoint.

Client Server Port Protocol Doing what?

Operator EDX-toolbox 9443 HTTPS Monitoring/Dashboard (GUI)

BA Artemis Internal Broker 5672/5671 AMQP/AMQPS Message transport, if you
decide to use AMQP(S) to
connect from BA -> EDX

Operator ECP-endpoint 8443 HTTPS Monitoring/Dashboard (GUI)

ECP-endpoint –
open only to
your TSO CD

CD (prod):
ecp4prod.statnett.no
iecp.prod.energinet.dk
ecp4.svk.se
ecp.fingrid.fi*

443 for
Statnett
8443 for
other TSOs

HTTPS Synch of ECP-network
information/certificates.
Essential for ECP to work

CD (test):
ecp4.statnett.no
iecp.preprod.energinet.dk
ecp4-test.svk.se
ecp-test.fingrid.fi*

ECP-endpoint –
open to all TSO

Broker (prod):
ecp4prod.statnett.no
iecp.prod.energinet.dk
ecp4.svk.se
ecp.fingrid.fi*

5671 AMQPS Message transport. Essential
for ECP to work.

Broker (test):
ecp4.statnett.no
iecp.preprod.energinet.dk
ecp4-test.svk.se
ecp-test.fingrid.fi*2

4.6 Test environment is mandatory
NEX requires a test-endpoint which will be connected to NEM TEST. NB! It is not possible to connect

from test to production (or vice versa) in NEM. The Endpoint Code (EC) is decided by the TSOs and

will differ between test and production.

4.7 Endpoint policy
NEM will enforce some rules regarding the number of endpoints you can connect:

• The rule of thumb is one Endpoint pr Market Actor (MA). The Endpoint may be operated or

even owned by an Endpoint Operator (EO). See Terminology chapter for definition of terms.

1 An OS dedicated to run ECP-endpoint and EDX-toolbox and no other servers/processes. It doesn't matter if it's
a virtual or physical server.
* Fingrid has whitelisting of IPs, only Nordic IPs are allowed plus IPs from Azure-WestEurope (Netherlands). If
your endpoint is located in an "exotic" location then you need to contact Fingrid.

9

• An MA may run more than one Endpoint if it is necessary or beneficial. A reason could be

that the MO uses various EOs, or that it will reduce risk of service interrupts to distribute the

traffic to more Endpoints. The TSO may require the MA to add extra endpoints.

• An Endpoint must not be used by more than one MA.

• If the EO is not the same entity as the MA, then it is expected that information about the

operation which goes from the TSO to the EO will be distributed to the MA by the EO.

• In NEM-TEST less strict rules can be applied. Thus, for example System Integrators (typically

those that take on the EO role) can have endpoints as well as MAs.

10

5 Installation/Upgrade of ECP + IB on Windows

5.1 Java
Version 17.0.14 is the recommended version – although also later versions of Java 17 will most likely

work fine (but is not tested). To get Java in correct state execute the following chapters:

• For installation: ECP Installation Guide (IG) chapter 5.1

• For updating: ECP Upgrade Guide (UG) Chapter 5.1.1 - 5.1.3.

NB! Some tips to get a successful installation – perform this check AFTER java-installation/upgrade

and BEFORE you install the ECP-package.

• Make sure that you have JRE (not JDK!) installed, and JRE_HOME points to correct folder.

• Do not have any MMC-consoles/services-windows or explorer-windows opened that could

possibly interfere with the installation

5.2 Installation – skip if not applicable
Assuming you start entirely from scratch, you can perform these steps:

• Execute ECP IG chapter 7.2

• Execute ECP IG Chapter 8.2

• If you run Windows 2019 – read chapter 5.5 (this doc)

• Then go to chapter 8 (this doc) to continue setup.

5.3 Upgrade method 1 – skip if not applicable
This upgrade method is not documented in ECP/EDX guides, but it is possibly slightly better than the

regular upgrade if you start from versions 4.12 or below. The method is as follows:

• Backup the db-folders for ECP and EDX

• Run Installation (previous chapter)

• Restore the db-folders for ECP and EDX

• Continue to chapter 8 to continue setup. Upon startup of ECP/EDX the databases will be

auto-upgraded and the content will be kept (certificates and service catalogues respectively)

The reason why this method could be better is that installation is simpler than upgrade – because

you start from scratch.

5.4 Upgrade method 2 – skip if not applicable
This is default upgrade method suggested by Unicorn/ENTSO-e:

If you're running v4.12 or lower (this is most likely you!):

1) Install Artemis/Internal Broker (ECP IG chapter 7.2)

2) Migrate/upgrade broker-configuration (ECP UG chapter 5.1.5)

3) Upgrade ECP (ECP UG chapter 5.1.4 + 5.1.6)

Else - you're running v4.14/4.15 (very few run this version):

1) Upgrade Artemis/Internal Broker (ECP UG 6.1.4 + 6.1.5)

2) Upgrade ECP (ECP UG chapter 5.1.4 + 5.1.6)

If you run Windows 2019 – read chapter 5.5 (this doc). Then go to chapter 8 to continue setup.

11

Important note: If you stop IB/Artemis, you must first stop ECP and EDX. This is to avoid loss of

messages. This is a general rule which must always be adhered to, whether or not documentation

mentions it.

5.5 Windows 2019 and TLS v1.3
This issue is not mentioned in the Upgrade Guide from Unicorn/ENTSO-e, but it turns out that

Windows 2019 does not support TLS v1.3 "out-of-the-box". The solution we can advise is to continue

to use TLS v1.2, although it is possible to upgrade your Windows installation to support TLS v1.3.

There are two places you need to fix this issue: The AMQPS-connector that is specified in the

InternalBroker and the HTTPS-connector specified in the ECP-endpoint. This is documented here:

• InternalBroker: ECP IG chapter 7.7.4

• ECP-endpoint: ECP IG chapter 8.7.3

It has been reported, but not verified by Unicorn, that the following line in the server.xml (ECP-

endpoint) should be removed for this to work – ChatGPT says it is fine to do so. ChatGPT says HTTP2

could in certain circumstances force TLS v1.3.

<UpgradeProtocol className="org.apache.coyote.http2.Http2Protocol" />

12

6 Installation/Upgrade of ECP + IB on Linux

6.1 Installation – skip if not applicable
Assuming you start entirely from scratch, you can perform these steps: Execute ECP IG chapter 7.4

and then ECP IG Chapter 8.4. Then go to chapter 8 (this doc) to continue setup.

6.2 Upgrade method 1 – skip if not applicable
This upgrade method is not documented in ECP/EDX guides, but it is possibly slightly better than the

regular upgrade if you start from versions 4.12 or below. The method is as follows:

• Backup the db-folders for ECP and EDX

• Run Installation (previous chapter)

• Restore the db-folders for ECP and EDX

• Continue to chapter 8 to continue setup. Upon startup of ECP/EDX the databases will be

auto-upgraded and the content will be kept (certificates and service catalogues respectively)

The reason why this method could be better is that installation is simpler than upgrade – because

you start from scratch.

6.3 Upgrade – skip if not applicable
This is default upgrade method suggested by Unicorn/ENTSO-e:

If you're running v4.12 or lower (this is most likely you!):

4) Install Artemis/Internal Broker (ECP IG chapter 7.4)

5) Migrate/upgrade broker-configuration (ECP UG chapter 5.2.5)

6) Upgrade ECP (ECP UG chapter 5.2.4 + 5.2.6)

Else - you're running v4.14/4.15 (very few run this version):

3) Upgrade Artemis/Internal Broker (ECP UG 6.2.3 – 6.2.5)

4) Upgrade ECP (ECP UG chapter 5.2.4 + 5.2.6)

Then go to chapter 8 to continue setup.

Important note: If you stop IB/Artemis, you must first stop ECP and EDX. This is to avoid loss of

messages. This is a general rule which must always be adhered to, whether or not documentation

mentions it.

13

7 Installation/upgrade of ECP + IB using Docker image
Docker support is limited, and it is expected that users have more understanding and experience

than those that install on Linux or Windows. Still, there are a few resources that may provide the

necessary support to get you through this:

• Docker-version should be at least 20 to avoid an issue with the 4.16-images, maybe even

newer

• This installation guide you're reading. It intends to tie together the other resources and also

provide some extra information where it seems to be lacking

• For the images themselves, please see chapter 4.1.

• The standard ECP Download package contains examples of setup

o Ecp-docker-test-env.zip (a "bare-bone" setup – see chapter 7.1.1)

o Ecp-endpoint-kubernetes.zip (useful for "cloud" setup – see chapter 7.1.2)

• The ECP Installation Guide chapter 16.

Warning 1: If you do not use local disks (typical in cloud setup), you may run into problem with

hangup/freeze in some of the lower layer network stack. To avoid problems as much as possible, do

make sure to have fast disks rather close to the host running the container.

Warning 2: You may believe that using containers as runtime makes ECP scalable, but that is only

true if you setup a so-called High Availability (HA) configuration of ECP and this is not covered in this

document because NEX has low confidence that HA solves more problems than it creates. Thus, the

best reason for going with containers is that your entire environment is container-based.

This chapter is not focused on the whole configuration of ECP, but rather on the specific parts related

to Docker. Therefore, in order to configure ECP, please read the relevant section for Linux (see

chapter 8/9).

7.1 Installation

7.1.1 Bare-bone Docker Host setup
You may use the docker-compose.yml in the zip-files provided in the download. Such a setup is

convenient for testing/development.

7.1.2 Cloud setup
The log folder and the activemq temporary data folder should not be mounted on “slow” network

attached storage. This may cause log events to be missed or delays in the AMQP message flows. If

you see problems of this kind, please consider faster or "more local" storage.

7.1.2.1 Database

In general, it is recommended to use an external database when deploying containers. Storing

database files on the container host itself is considered bad practice, because it locks in the container

to that specific host.

If the storage used for the local disk in the container is physically located elsewhere than on the

container host itself (e.g., probably in any cloud environment), please configure the endpoint to use

an external database, instead of the default embedded Derby database. Running a Derby database

with its data files stored on network attached storage has proven to result in all sorts of weird issues

with the endpoint.

Read IG chapter 13 (External Databases) for details on configuration for use of an external database.

14

7.1.2.2 Storage for ECP network keystore files

Please mount the /var/lib/ecp-endpoint folder to a folder outside of the image. As the keystore files

are stored in the database, and copied to the file storage on each startup, there is no need to use

persistent storage for this folder.

Not doing as described above prevents use of different keystore passwords than the default, because

the software will report password failure for the authKeystore.jks file during startup, which will result

in the software running in a half-broken state, where one sees a 404 when the dashboard interface is

being accessed.

Checking the keystore file in the folder after startup, the file appears to have the correct password.

But due to what seems like a timing issue, the software is reading the keystore file provided by the

image, before the file has been updated from the content in the database, hence throwing a keystore

password error.

7.2 Upgrade
The official documentation from Unicorn is not comprehensive when it comes to Docker Installation.

However, it should suffice to follow the advice for Linux (see previous chapter) to the best of your

abilities. At least the part about configuration change will apply also for Docker. Also read ECP

Upgrade Guide (UG) chapter 8 and ECP Release Notes to get information on what has changed.

Extract the config files from the new version of the docker image and compare these to the config

files in the current container. Be sure to also check for changed or new Java VM variables and update

accordingly.

15

8 InternalBroker/Artemis Setup (for all OS installations)
In ECP v4.14+ and EDX v1.14+ the "InternalBroker" (IB), previously a part of the ECP and EDX, is now

a separate system/process. The drawing below (taken from chapter 3) highlights the component.

This component is the Apache Artemis ActiveMQ broker, with some configuration to make it suited

for its role in the ECP/EDX-endpoint.

As seen from the drawing, there is one connection made from EDX-toolbox towards the IB, and

another from the ECP-endpoint. In this section we will set up the IB configuration and at the same

time explain how to configure the connections from EDX and ECP. This is done to show how the

various configuration these components relate to one another. At this point in the installation guide

you might not have installed EDX yet, but once you have – you can come back to this section to check

how to configure the AMQP/S connection to the IB.

8.1 InternalBroker GUI/API/metrics
Before we configure the AMQP/S part, let's focus on the GUI of the IB. This interface is available on

port 8161. The interface offers something resembling Hawtio (for those that used that in older

versions of ECP/EDX). But the interface also offers Prometheus metrics and an API that tools like

ekit.jar (see https://ediel.org/nordic-ecp-edx-group-nex/nex-statnett/) can extract information and

perform operations.

8.1.1 Bootstrap.xml
We suggest the following as a template for bootstrap.xml. The brackets with bold font content is

supposed to be replaced by you.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<broker xmlns="http://activemq.apache.org/schema">

 <jaas-security domain="activemq"/>

 <web path="web" rootRedirectLocation="console">

 <binding name="artemis" uri="https://0.0.0.0:8161"

 keyStorePath="file:[your-jks-file]"

 keyStorePassword="[password]"

 trustStorePath="file:[your-jks-file]"

 trustStorePassword="[password]"

 includedTLSProtocols="TLSv1.3"

https://ediel.org/nordic-ecp-edx-group-nex/nex-statnett/

16

 includedCipherSuites="TLS_AES_256_GCM_SHA384,TLS_CHACHA20_POLY1305_SHA256,TLS_AES_128_GCM_SHA256"

 sniHostCheck="false">

 <app name="branding" url="activemq-branding" war="activemq-branding.war"/>

 <app name="plugin" url="artemis-plugin" war="artemis-plugin.war"/>

 <app name="console" url="console" war="console.war"/>

 <app url="metrics" war="metrics.war"/>

 </binding>

 </web>

</broker>

Note1: The suggested setup requires that you have a certificate. It's possible to skip that by changing

from https to http in the uri.

Note2: The war-attribute for the 3 first app (branding, plugin, console) might have to be specified

with a full path, at least on linux-installations. On Windows you can skip it.

8.1.2 Jolokia-access.xml
The jolokia-access-file restrict access to the API for tools like previously mentioned ekit.jar. If you

want to be able to use ekit.jar, then this is a simple solution to allow remote access:

<?xml version="1.0" encoding="utf-8"?>

<restrict>

 <cors>

 <allow-origin>*</allow-origin>

 </cors>

</restrict>

8.2 AMQPS/AMQP-configuration
One important choice to make is whether the IB will support AMQPS or AMQP.

The reasons for AMQPS are:

• EDX and ECP runs on different hosts (typically container environment)

• A BA is connected and uses AMQPS

• It's the default setup – best practice

The reasons for AMQP are

• A BA is connected and uses AMQP – and you want to avoid changing the BA

• EDX and ECP runs on same host (typically Windows/Linux installation) and no BA is

connected

• Avoid the PKI involved in distributing/updating the AMQPS certs every year, especially if a BA

is involved

8.2.1 Artemis configuration files
Keep in mind the following before looking at the configuration files:

• The following shows configuration for AMQPS – but read the note at the end to see how you

run AMQP.

• In this example we've chosen to re-use the AUTH-certificate (referred to as

"ecp_module_auth") from ECP, since it's readily available and is renewed every so often. This

is a simple option to get started. The example shows that we use the exact same file, but the

17

important thing is to have a jks-file with the appropriate certificate in it. The mature solution

would be to create your own host-certificates and renew them every so often.

• Only the relevant part of each configuration file is shown, not the entire files.

• Each property that is related to another property in another property-file is shown with a

color. Orange means "ssl-stuff". Green means "ip/port". Blue means "jks-stuff". Pink means

"user/pass"-stuff.

• Some newlines/whitespace is added to make it readable, remove those if copying

• The broker is listening on 0.0.0.0, which is to say: available for remote connections.

broker.xml:

<!--security-enabled>false</security-enabled-->

<acceptors>

 <acceptor name="amqps-internal">

 tcp://0.0.0.0:5672?

 sslEnabled=true;

 keyStorePath=/var/lib/ecp-endpoint/authKeystore.jks;

 keyStorePassword=password;

 keyStoreAlias=ecp_module_auth;

 trustStorePath=/var/lib/ecp-endpoint/authKeystore.jks;

 trustStorePassword=password;

 needClientAuth=false;

 protocols=AMQP;

 enabledProtocols=TLSv1.3;

 enabledCipherSuites=TLS_AES_256_GCM_SHA384,

 TLS_CHACHA20_POLY1305_SHA256,

 TLS_AES_128_GCM_SHA256

 </acceptor>

</acceptors>

artemis-users.properties:

endpoint = password

toolbox = password

artemis-roles.properties:

amq = endpoint,toolbox

ecp.properties:

internalBroker.host=127.0.0.1

internalBroker.amqp.port=5672

internalBroker.useAuthentication=true

internalBroker.keystore.location=/var/lib/ecp-endpoint/authKeystore.jks

internalBroker.keystore.password=password

internalBroker.keystore.authAlias=ecp_module_auth

18

internalBroker.auth.user=endpoint

internalBroker.auth.password=password

internalBroker.parameters=jms.prefetchPolicy.queuePrefetch=10

edx.properties

internalBroker.amqp.host=127.0.0.1

internalBroker.amqp.port=5672

internalBroker.useAuthentication=true

internalBroker.keystore.location=/var/lib/ecp-endpoint/authKeystore.jks

internalBroker.keystore.password=password

internalBroker.keystore.authAlias=ecp_module_auth

internalBroker.auth.user=toolbox

internalBroker.auth.password=password

ecpBroker.amqp.host=127.0.0.1

ecpBroker.amqp.port=5672

ecpBroker.useAuthentication=true

ecpBroker.keystore.location=/var/lib/ecp-endpoint/authKeystore.jks

ecpBroker.keystore.password=password

ecpBroker.keystore.authAlias=ecp_module_auth

ecpBroker.auth.user=toolbox

ecpBroker.auth.password=password

ecp.broker.url=amqps://${ecpBroker.amqp.host}:${ecpBroker.amqp.port}

Import notes

• If you decide to follow this example to the letter, make sure that your Artemis and EDX

process have read-access to the authKeystore.jks which is owned by ECP process.

• If you want to run AMQP, then change the orange-colored fields (uncomment the first, set

the next four orange to "false" and change to "amqp" in the last orange field). The

blue/turquoise-colored fields are no longer used

19

9 ECP Setup (for all OS installations)

9.1 ECP-endpoint configuration

9.1.1 Configuration of ecp.properties
Make sure the properties in the table are configured. Some of them might be in place, others might

need to be changed. In addition, there will be properties already defined, but not mentioned here –

that is as expected and presents no problem.

NB! Only the application and root/administrator should have access to this configuration file.

Property Description
ecp.endpoint.amqpApiEnabled = true
ecp.endpoint.sendHandler[0].beanName=amqpApiSendHandler
ecp.endpoint.sendHandler[0].typeName=*

You MUST ADD these properties,
otherwise messages cannot be sent from
ECP to EDX.

spring.profiles.active= ecp-nonha

ECP will run in non-HA mode

ecp.directory.client.synchronization.directorySynchronization
Interval=30 * * * * *
ecp.directory.client.statistics.directorySynchronizationInter
val=15 * * * * *
ecp.directory.client.synchronization.messagePathSynchronizati
onInterval=45 * * * * *

You may have changed them according to
Unicorn Guide, but this is a better setup
for our network. Use this one. With this
setup each type of synchronization with
the Component Directory will run on
different second (15, 30 and 45) in every
minute.

ecp.endpoint.connectivityCheckAttemptTimeout=6000
ecp.endpoint.connectivityCheckAttemptsCount=10

These are optional settings to allow for 60s
(6s*10) timeout on a connectivity-check.
The default is 10s. See chapter 14.1 for
more info.

ecp.db.compressionJobEnabled=false
ecp.db.messageCompressionJobEnabled=false

The database may grow large, thus a
regular compression job is wanted. But the
job can lead to problems in a high-traffic
endpoint, since it will conflict will on-going
logging to the database. Since compression
is not strictly necessary, it's better to turn
off completely. It's possible to run
compression safe manually, when the
endpoint is stopped.

ecp.csrf.secret=password

management.endpoint.health.show-details=ALWAYS
endpoints.prometheus.sensitive=false
management.endpoints.web.exposure.include=info,health,readine
ss,prometheus

The csrf-secret is used to generate CSRF-
tokens when logging in to ECP GUI. Should
perhaps not be 'password'…

The next block are properties related to
monitoring. You can read about them in
ECP AG. With this setup you will get all
possible monitoring turned on, and you
can access the following URLs:
/ECP_MODULE/actuator/prometheus
/ECP_MODULE/actuator/info
/ ECP_MODULE/actuator/health
/ ECP_MODULE/actuator/readiness

internalBroker.parameters=jms.prefetchPolicy.queuePrefetch=10 Change prefetch limit from 1000 to 10.
Prefetch will cause messages to stick to a
consumer, and if that consumer gets
"stuck", the messages can be lost.

NB! Do not forget to add the properties listed for ecp.properties in chapter 8.2.1.

20

9.1.2 Configuration of ecp-users.properties
NB! Only the application and the root/administrator should have access to this file.

The configuration file defines users, roles and passwords needed to log on to the ECP GUI. Here is a

simple example of the two types of users available:

ecp.endpoint.users[0].login=admin

ecp.endpoint.users[0].password=supersecret

ecp.endpoint.users[0].role=admin

ecp.endpoint.users[1].login=user

ecp.endpoint.users[1].password=secret

ecp.endpoint.users[1].role=user

To add more users, simply follow the examples and increase the index. It is advisable to change the

passwords. It is possible to hash/encrypt these passwords (see ECP IG or ECP AG, search for 'hash'),

but since no one but root/administrator should be able to access this file – it does not improve

security much.

9.2 Start ECP-endpoint
Important note: Before you start ECP (or EDX), you must start Artemis/IB. This is to avoid loss of

messages. This is a general rule which must always be adhered to, whether or not documentation

mentions it elsewhere.

For Windows use Services to start or use the command-window with the appropriate privileges to

run:

>SC start eccosp-artemis

>SC start ecp-endpoint

For Linux use the command:

>systemctl start eccosp-artemis

>systemctl start ecp-endpoint

9.3 Installation verification
Check the application log files for more information about its status. The catalina-log is useful for

telling about the tomcat-startup of the application, while the ecp-log is giving information about

what happens thereafter.

Check the ECP-Dashboard-URL:

https://localhost:8443/ECP_MODULE (change "localhost" to the IP-address of the host if needed)

Most browsers will not show this page without giving a security warning. This is because of the usage

of self-signed certificate and the fact the hostname of the certificate usually does not match the URL.

To properly fix this you must create a TLS-certificate for this host and change some settings in

server.xml in Tomcat. The details of TLS-certificate creation are not explained in this document, one

needs to check with other resources – it is beside the ECP-domain, and strictly a webserver/browser-

issue.

https://localhost:8443/ECP_MODULE

21

In case login is required (due to settings in ecp.properties and ecp-user.properties), the default login

is admin/password. See previous chapter for configuration.

9.4 ECP-endpoint Registration – skip this one in Upgrade

9.4.1 Registration process

• Open ECP-Dashboard-URL in a browser

• Select the registration keystore provided by your TSO (see 4.2) and enter the password. You

will receive the password from the TSO, or else try "password". Click “Continue” to proceed

to the next step.

• Enter the appropriate CD URL and CD Code (see tables below), then click on the "check

connectivity"-button. In this step you must know which TSO you're connecting to – you must

only select one CD Code and CD URL from the tables below. Then click "Continue".

NEM TEST/PREPROD
TSO CD Code CD URL

Fingrid 44V000000000017H https://ecp-test.fingrid.fi:8443/ECP_MODULE

Energinet 45V000000000057R https://iecp.preprod.energinet.dk:8443/ECP_MODULE

SvK 46V0000000000012 https://ecp4-test.svk.se:8443/ECP_MODULE

Statnett 50V000000000111W https://ecp4.statnett.no/ECP_MODULE

NEM PROD
TSO CD Code CD URL

Fingrid 44V000000000006M https://ecp.fingrid.fi:8443/ECP_MODULE

SvK 46V000000000019K https://ecp4.svk.se:8443/ECP_MODULE

Energinet 45V000000000053Z https://iecp.prod.energinet.dk:8443/ECP_MODULE

Statnett 50V000000000118I https://ecp4prod.statnett.no/ECP_MODULE

• Next, fill in your own Endpoint Code (EC) which you received from the TSO (see chapter 4.2)

• Next, fill in the name of the Market Actor (MA) (see chapter 4.7) – not the System Operator

(SO). If MA is a group of several "sister companies", then combine them into one name.

Example: The sister companies Power AS, Power AB and Power Oy is to be written as "Power

AS/AB/Oy" or something to that effect.

• For contact email in NEM PROD, use a monitored3 email address of the SO. A personal email-

address will in general not be approved, because this email-address will be used to send

information about upgrades and issues. In NEM TEST personal email address is allowed.

• Phone number is not as important, it's a secondary option if email contact fails.

• Environment/Project-fields are new (not shown in the screenshot below). Their main

purpose of the fields is to be printed in the GUI menu/tab so that you have a way to separate

the various GUIs. See last screenshot below.

3 Monitored means that some organization will be responsible for processing the email at least daily.

https://ecp-test.fingrid.fi:8443/ECP_MODULE
https://iecp.preprod.energinet.dk:8443/ECP_MODULE
https://ecp4-test.svk.se:8443/ECP_MODULE
https://ecp4.statnett.no/ECP_MODULE
https://ecp.fingrid.fi:8443/ECP_MODULE
https://ecp4.svk.se:8443/ECP_MODULE
https://iecp.prod.energinet.dk:8443/ECP_MODULE
https://ecp4prod.statnett.no/ECP_MODULE

22

Register – password is usually "password" unless your TSO has decided otherwise.

Enter the CD Code and CD URL – not your own Endpoint Code (EC)!

Here you add your own Endpoint Code (EC), the Organization of the Market Actor (MA), and the

contact information of the System Operator (SO). This screenshot is missing a couple of fields

(Project/Environment), see effect of these fields in next screenshot. You can change

Project/Environment-settings later on the Settings-page.

23

See HT|TEST in the top menu, this denotes the fields "Project" and "Environment" mentioned

earlier.

9.4.2 Send email to TSO and wait for approval
At this point, you must wait until the CD administrator approves your registration request. In case

the CD administrator doesn’t notice the registration request you can send a notification via email

to ecp@statnett.no, ecp@svk.se, ecp@energinet.dk or ecp.support@fingrid.fi to notify of the

registration request. In the ECP Dashboard you can monitor whether your endpoint has been

approved or not – the "Component Directory" and "Certificates" tile should be green when this

happens. The dashboard will look like this after a couple of minutes after the approval by the TSO.

mailto:ecp@statnett.no
mailto:ecp@svk.se
mailto:ecp@energinet.dk
mailto:ecp.support@fingrid.fi

24

Once the request is approved your ECP-endpoint is connected to the CD and can exchange

information about the network.

9.5 Message Path
You must define a Message Path to tell how message are supposed to be routed to your endpoint. If

you forget this step you will not receive any messages and the dashboard will show a red tile.

• Choose Settings tab in the ECP Dashboard

• Choose button "+ New Path"

• Set Message Type to "*", Path to "Indirect". In the drop-down, choose the broker which

starts with 44V(Fingrid), 45V(Energinet), 46V(SvK) or 50V(Statnett) depending on which TSO

you're registered with.

• Set "Valid from" back in time since the endpoint is running UTC-time as default. There is no

danger in setting yesterday as "valid from".

• Do not set "Valid to"-field – the message path should be valid forever

• Press "Save" – your message path will be known to everyone in the national ECP-network

within 2 minutes and within 12 minutes in the cross-Nordic ECP-network.

25

9.5.1 Failover Message Path is now mandatory
To achieve high uptime on the communication to the ECP-network, add additional (AKA failover)

message paths to your endpoint. The effect is that if one central broker is down (e.g., if Statnett's

broker is down), your endpoint will be able to retrieve messages via other brokers. The other TSOs

brokers will be used for failover, thus they're in constant use. Therefore, one can expect that the

failover paths will actually work once they are needed. By following the procedure below, you will

add 3 failover brokers (for each of the other TSOs in the Nordics). BUT! This will not work unless you

open the firewall to allow traffic to these brokers. See chapter 4.5.

Go to one of these pages, depending on which TSO CD your endpoint is connected to:

https://ediel.org/nordic-ecp-edx-group-nex/energinet/

https://ediel.org/nordic-ecp-edx-group-nex/fingrid/

https://ediel.org/nordic-ecp-edx-group-nex/nex-statnett/

https://ediel.org/nordic-ecp-edx-group-nex/svenska-kraftnat/

Based on whether your endpoint is connected to NEM-TEST/PREPROD or NEM-PROD, then download

the appropriate MessagePath-file (TEST-MP or PROD-MP). This is a JSON-file, but suffix is CSV. Next

Go the ECP Settings page and click on "Import Paths" (next to "+ New Path"). The choose the file

you've downloaded. The result should be something similar to this (at least in TEST/PREPROD):

https://ediel.org/nordic-ecp-edx-group-nex/energinet/
https://ediel.org/nordic-ecp-edx-group-nex/fingrid/
https://ediel.org/nordic-ecp-edx-group-nex/nex-statnett/
https://ediel.org/nordic-ecp-edx-group-nex/svenska-kraftnat/

26

The message paths highlighted are the extra message paths you've just added. The list of brokers in

the "Path" column should all be different ECP-codes.

9.6 Verify the installation

• Open ECP-Dashboard

• Check that the box indicating synchronization is green

• Make a "New Message" and send to a TSO-endpoint. You can find which endpoint belongs to

which organization on the Components-page. The MESSAGE TYPE should be set to "TEST"

and the file you send should be a small text file. Press the Send-button, wait a few seconds

and then refresh the page. If the message (check Outbox) gets the status "Received" the test

is successful. See screenshots below:

27

9.7 Change timezone of the endpoint
Change the timezone of the endpoint on the Settings page, so the Dashboard will reflect correct
timestamps. The file logs will continue to be in UTC-time.

28

9.8 Troubleshooting

9.8.1 ECP-Endpoint does not respond on expected port

• Check catalina-logs – it should log "BindException: Address already in use". To find which

process this is, run (in console as admin) "netstat -a -n". You can then identify the PID of the

process LISTENING on port 8443 and find that process in Task Manager. If you want to, you

can change the ports in tomcat\conf\server.xml and restart the service to restart ECP.

9.8.2 Message status "Failed"

• The broker or the receiving endpoint might not have gotten the information about your

endpoint's certificate – thus rejecting the message. The problem is then related to

synchronization with the CD, either between your own endpoint and the CD, or between the

receiving endpoint/broker and the CD. Synchronization of new certificates should take at

maximum 12 minutes. If you are certain that your own endpoint is synchronized (check this

status on the Settings page – there is a "connectivity check" for your CD), then you must

contact the CD administrator.

9.8.3 Message status "Accepted"

• Possibly, your firewall does not allow outgoing traffic to the Central Broker (see "Big Picture"

in chapter 3)

9.8.4 Component Directory is not synchronized

• You're not approved yet – wait a little or remind the administrator of the ECP-network

• Your firewall does not allow outgoing traffic to the CD (see "Big Picture" in chapter 3)

9.8.5 You're able to send, but do not receive any messages

• Your Message Path is not defined in "Settings" (see chapter 9.5)

29

10 Installation or Upgrade of EDX-toolbox on Windows

10.1 Java
In all likelihood you've already installed Java on this host, if you follow the advice of this guide. If you

insist on installing EDX on a separate host, then you must of course install Java again. Please follow

the advice given for Java-installation on ECP (se chapter 5.1).

10.2 Installation – skip if not applicable
Execute EDX IG chapter 6.2.

10.3 Upgrade – skip if not applicable
Execute EDX UG chapter 5.1

10.4 Service properties (ports used)
Following this guide, the EDX is installed on the same OS/host as ECP. Please go through the

following chapters to make sure that there are no port conflicts (there should not be any, if the

installation script worked as it should): EDX IG, chapter 6.7.2-6.7.3 (or possibly 6.7.4 depending on

how EDX-toolbox was installed).

10.5 Windows 2019 and TLS v1.3
This issue is not mentioned in the Upgrade Guide from Unicorn/ENTSO-e, but it turns out that

Windows 2019 does not support TLS v1.3 "out-of-the-box". The solution we can advise is to continue

to use TLS v1.2, although it is possible to upgrade your Windows installation to support TLS v1.3.

This is documented in EDX IG chapter 7.4

It has been reported, but not verified by Unicorn, that the following line in the server.xml should be

removed for this to work – ChatGPT says it is fine to do so. ChatGPT says HTTP2 could in certain

circumstances force TLS v1.3.

<UpgradeProtocol className="org.apache.coyote.http2.Http2Protocol" />

30

11 Installation or Upgrade of EDX-toolbox on Linux

11.1 Installation
If you do a first-time installation then execute EDX Installation Guide (IG) chapter 5.1 (Java

installation).

Then execute EDX IG chapter 6.4 + 6.7.1.

11.2 Upgrade
Execute the EDX Upgrade Guide (UG) chapter 5.2

31

12 Installation or Upgrade of EDX-toolbox using Docker image
Docker support is limited, and it is expected that users have more understanding and experience

than those that install on Linux or Windows. Still, there are a few resources that may provide the

necessary support to get you through this:

• This installation guide you're reading. It intends to tie together the other resources and also

provide some extra information where it seems to be lacking

• For the images themselves, please see chapter 4.1.

• The standard EDX Download package examples of setup in the EDX Other Deliverables folder

o edx-docker-test-env.zip (a "bare-bone" setup – see chapter12.1.1)

o edx-endpoint-kubernetes.zip (useful for "cloud" setup – see chapter12.1.2)

• The EDX Installation Guide chapter 11.

This chapter is not focused on the whole configuration of EDX, but rather on the specific parts related

to Docker. Therefore, in order to configure EDX, please read the relevant section for Linux (see

chapter 6).

12.1 Installation

12.1.1 Bare-bone Docker Host setup
You may use the docker-compose.yml in the zip-files provided in the download. Such a setup is

convenient for testing/development.

12.1.2 Cloud setup
The log folder and the activemq temporary data folder should not be mounted on “slow” network

attached storage. This may cause log events to be missed or delays in the AMQP message flows. If

you see problems of this kind, please consider faster or "more local" storage.

12.1.2.1 Database

In general, it is recommended to use an external database when deploying containers. Storing

database files on the container host itself is considered bad practice, because it locks in the container

to that specific host.

If the storage used for the local disk in the container is physically located elsewhere than on the

container host itself (e.g., probably in any cloud environment), please configure the endpoint to use

an external database, instead of the default embedded Derby database. Running a Derby database

with its data files stored on network attached storage has proven to result in all sorts of weird issues

with the endpoint.

Read IG chapter 10 (External Databases) for details on configuration for use of an external database.

12.1.2.2 EDX DMS cache

Make sure that the EDX DMS cache storage is placed on persistent storage.

If located on non-persistent storage, there is a risk of the EDX-toolbox getting into a bad state after a

restart, in case of the ECP-endpoint being down while the EDX-toolbox is stopping. Getting the EDX-

toolbox to run properly again, requires fiddling with entries in the database.

It is recommended to use high-performance storage (e.g., backed by SSD drives) – if the storage is

too slow, message throughput will be impacted.

32

12.2 Upgrade
The official documentation from Unicorn is not comprehensive when it comes to Docker Installation.

However, it should suffice to follow the advice for Linux (see previous chapter) to the best of your

abilities. At least the part about configuration change will apply also for Docker. Also read EDX

Upgrade Guide (UG) chapter 5 and ECP Release Notes to get information on what has changed.

Extract the config files from the new version of the docker image and compare these to the config

files in the current container. Be sure to also check for changed or new Java VM variables and update

accordingly.

33

13 EDX Setup (for all OS installations)

13.1 Configuration of edx.properties
The edx.properties configuration file comes with many configuration parameters (all of them are

commented briefly in the edx.properties file itself). Most of the configuration parameters use default

values, but the following parameters must be configured for each installation:

Parameter Description

edx.toolbox.code=<Endpoint-Code> ECP-endpoint code assigned to this Toolbox. This is
the same Endpoint Code (EC) you received in chapter
4.2 and which you specified in the last step of
chapter 9.4.1. Remove the angle brackets.

edx.serviceCatalogue.code=<ServiceCatalogue-Code> Choose the TSO which you're connected to and
enter the code of the ServiceCatalogue:

NEM Test-network:

• Statnett: 50V000000000113S

• Fingrid: 44V000000000023M

• Energinet: 45V000000000059N

• SvK: 46V000000000016Q

NEM Production-network:

• Statnett: 50V000000000120V

• Fingrid: 44V000000000024K

• Energinet: 45V000000000055V

• SvK: 46V000000000021X

spring.profiles.active= edx-nonha With the recommended setting you require
authenticated access to dashboard and webservices.
For other options, see EDX User Guide.

edx.toolbox.deleting.dms.deleteOlderThan=72 The default value of this parameter is 168 which says
that a copy of all messages going through EDX is
stored in 168h. This might require some extra disk
space if you have many messages passing through. If
you shorten this time period you'll need a little bit
less disk space, but at the same time you risk failed
delivery if some problem in EDX (or a lack of ACK)
lasts for more than this time period.

edx.csrf.secret=password

endpoints.prometheus.sensitive=false
management.endpoints.web.exposure.include=info,health,readi
ness,prometheus

This a host of properties related to monitoring. You
can read about them in ECP AG. With this setup you
will get all possible monitoring turned on, and you
can access the following URLs:
/actuator/prometheus
/actuator/info
/actuator/health
/actuator/readiness

edx.amqp.client.prefetch=10 Change prefetch limit from 1000 to 10. Prefetch will
cause messages to stick to a consumer, and if that
consumer gets "stuck", the messages can be lost.

edx.toolbox.ecp4.redeliveryAttempts=3
edx.toolbox.ecp4.redeliveryDelay=5000

There are certain situations in EDX where redelivery
of a message will be attempted. The default
redelivery is 100 * 10000 ms = 1000s, which we
lower to 15s in this case, to avoid a situation where
the EDX is stuck doing nothing for 1000s.

NB! Do not forget to add the properties listed for edx.properties in chapter 8.2.1.

34

13.2 Configuration of edx.yml
The configuration in the edx.yml deals with the various interfaces available to access EDX from the

BA. Default settings (allow Web Service interface) is ok to begin with. You can use the default edx.yml

configuration, move on to next chapter, and later change the edx.yml to suit your needs. The

configuration is explained in chapter 13.6.

NB! Make sure to have only one yml-file in the config-directory – since EDX will read all files with

yml-suffix.

13.3 Configuration of edx-users.properties
To enable authentication, set the spring.profiles.active-parameter as explained in the edx.properties

configuration above.

NB! Only the application and the root-administatrator should have read-access to this file. The same

goes for write-access. The file defines the user, role and passwords. Here is a simple example of the

two types of users available:

edx.toolbox.users[0].login=admin

edx.toolbox.users[0].password=supersecret

edx.toolbox.users[0].role=serviceManager

edx.toolbox.users[1].login=user

edx.toolbox.users[1].password=secret

edx.toolbox.users[1].role=user

To add more users, simply add new lines and increase the index.

13.4 Starting and stopping EDX-toolbox
For Windows use Services to start/stop or use the command-window with the appropriate privileges

to run "SC start/stop edx-toolbox". For Linux use the command "systemctl start/stop edx-

toolbox.service". You may start the toolbox now.

13.5 Installation verification
The application should be installed in the installation path folder. This installation folder should

contain configuration files, tomcat folder and uninstaller. After the application is successfully started,

it creates additional folders for data and log files. You could browse through edx-toolbox.log or

edx.log to see if any ERROR-entries occur – there should be none. Catalina-logs will tell you if there is

a port conflict (if so go back where you set up the ports for the toolbox). The status of the service, if

installed, can be checked either via command line: "SC query edx-toolbox" or in the Windows

Services tool.

13.5.1 EDX GUI verification
Check the EDX-Dashboard-URL:

https://localhost:9443/ (change "localhost" to the IP-address of the host if needed)

Most browsers will not show this page without giving a security warning. This is because of the usage

of self-signed certificate and the fact the hostname of the certificate usually does not match the URL.

To properly fix this you must create a TLS-certificate for this host and change some settings in

https://localhost:9443/

35

server.xml in Tomcat. The details of TLS-certificate creation are not explained in this document, one

needs to check with other resources.

In case login is required (due to settings in edx.properties and edx-user.properties), the default login

is admin/password. See previous chapters for configuration.

13.5.2 Service Catalogue verification – this is the perfect verification of ECP/EDX!
Open the Settings page to check if your copy of the Service Catalogue has arrived. Look at screenshot

below, which shows several SCs – the minimum requirement is that you have received the SC that

you've specified as in edx.properties. The timestamp should be recent! If it hasn't arrived you can

first check your ECP-endpoint to see that a message called EDX-INTERNAL-CONFIGURATION-

REQUEST was sent (see Outbox of your ECP-endpoint) shortly after you've started the EDX Toolbox. If

the TSO has added your toolbox to the Service Catalogue, then you will see in ECP Inbox that you

receive an EDX-INTERNAL-CONFIGURATION-MESSAGE message. If you do not receive such a file,

check that you have a proper Message Path in your ECP (chapter 9.5). If Message Path is ok, then

notify the TSO – they might have forgotten to add you to the Service Catalogue, since it is a manual

process to add the toolbox to the Service Catalogue.

Finally, when the file arrives in the Inbox of ECP, the file should then be consumed by EDX Toolbox,

but you will not see this file in the Messages-GUI of EDX. The file/SC-copy will be shown in the

Settings-page of EDX. The screenshot below shows an EDX Toolbox which is added in multiple Service

Catalogues, but you need at least one! If your ECP received the EDX-CONFIGURATION file, but the

Settings page does not show the Service Catalogue, please check EDX logs.

13.5.3 Send test messages
Open a web browser and navigate to the dashboard URL of your toolbox. You should see this, except

you won't have any messages in the list:

36

Make a "New Message" and send to a TSO-endpoint:

• NEM Test-network:

o Statnett: 50V000000000115O

o Fingrid: 44V000000000019D

o Energinet: 45V0000000000601

o SvK: 46V000000000017O

• NEM Production-network:

o Statnett: 50V000000000188Y

o Fingrid: 44V000000000010V

o Energinet: 45V000000000056T

o SvK: 46V000000000021X

The MESSAGE TYPE should be set to "TEST" and the file you send should be a small text file. Press the

Send-button, wait a few seconds and then refresh the page. If the message get the status "Received"

the test is successful. See screenshot below:

13.6 Configuring the edx.yml file (see EDX User Guide chp 5/6 for more information)
NB! Make sure to have only one yml-file in the config-directory – since EDX will read all yml-files.

This is an example of a relatively complete edx.yml, carefully crafted to show a number of features. It

should hopefully provide enough examples to help you configure your own edx.yml. The file will be

37

explained in detail below. Make sure not to introduce any tabs in this file, only spaces are allowed.

Also, be very careful about the number of spaces used for indentation – otherwise it will not be

parsed correctly. If you accidently miss a comma, EDX might not warn you about it. Some line breaks

are introduced in the example below for readability of very long lines; remove them! Make sure to

read the edx.log and catalina.log carefully after startup of EDX, it should show if the file was parsed

as expected. Especially – look for lines with "RoutesConfig" in edx.log – there should be one such

entry at startup for every route you've specified. Test your edx.yml in an online YAML-parser

(http://www.yamllint.com/), but beware of sharing password/secrets.

integrationChannels:
 amqpEndpoints:
 - {direction: in, code: amqp-ba1-outbox, queueName: edx.endpoint.outbox.ba1, redeliveryAttempts: 1, replyQueueName: edx.endpoint.reply.ba1}
 - {direction: out, code: amqp-ba1-inbox, queueName: edx.endpoint.inbox.ba1, redeliveryAttempts: 1}
 fssfEndpoints:
 - {direction: in, code: fssf-ba2-outbox, directory: /ba2/outbox, redeliveryAttempts: 1, replyDirectory: /ba2/reply}
 - {direction: out, code: fssf-ba2-inbox, directory: /ba2/inbox, redeliveryAttempts: 1}
 - {direction: out, code: edx-default, directory: /edx-default, redeliveryAttempts: 1}
 - {direction: out, code: edx-errors, directory: /edx-errors, redeliveryAttempts: 1}
 ftpEndpoints:
 - {direction: in, code: sftp-ba3-outbox, directory: ba3/outbox, redeliveryAttempts: 1, replyDirectory: ba3/reply, protocol: sftp, hostname: sftp.host.org,
 port: 22, username: user, password: pass, connectionParams: {stepwise: true, separator: UNIX, knownHostsFile: /home/edx-toolbox/.ssh/known_hosts }}
 - {direction: out, code: sftp-ba3-inbox, directory: ba3/inbox, redeliveryAttempts: 1, tempPrefix: ../tmp/, protocol: sftp, hostname: sftp.host.org,
 port: 22, username: user, password: pass, connectionParams: {stepwise: true, separator: UNIX, knownHostsFile: /home/edx-toolbox/.ssh/known_hosts }}
 kafkaEndpoints:
 - {direction: out, code: kafka-publish, topicName: publish, redeliveryAttempts: 1, connectionURI: "k1.host.org:9092,k2.host.org:9092",
 partitionKeyMadesHeaders: [businessType, sender], options: "compressionCodec=gzip&maxRequestSize=31457280&
 valueSerializer=org.apache.kafka.common.serialization.BytesSerializer"}
 - {direction: in, code: kafka-inbox, topicName: inbox, replyTopicName: inbox_reply, connectionURI: " k1.host.org:9092,k2.host.org:9092", options:
"groupId=edxGroup&sslTruststoreLocation=keystore.jks&sslTruststorePassword=password&sslKeystoreLocation=keystore.jks&sslKeystorePassword=password&sslKeystoreType=JKS
&sslTruststoreType=JKS&securityProtocol=SSL"}

components:
 validations: []
 transformations: []
 externalProcessing: []
routing:
 routes:
 - {code: R-sftp-ba3, start: toolbox-gateway, end: sftp-ba3-inbox, messageType: EXT-EI-MAGASINDATA }
 - {code: R-amqp-ba1, start: toolbox-gateway, end: amqp-ba1-inbox, service: {serviceCode: FASIT, domainCode: DEFAULT_DOMAIN,
serviceCatalogueCode: 50V000000000113S } }
 - {code: R-fssf-ba2, start: toolbox-gateway, end: fssf-ba2-inbox, service: {serviceCode: MMS, domainCode: DEFAULT_DOMAIN,
serviceCatalogueCode: 50V000000000113S } }
 - {code: R-ba1-ba2, start: toolbox-gateway, end: [amqp-ba1-inbox, fssf-ba2-inbox], service: {serviceCode: DK-MNA, domainCode: DEFAULT_DOMAIN,
serviceCatalogueCode: 50V000000000113S } }
 - {code: R-kafka-ba4,start: toolbox-gateway, end: kafka-publish, service: {serviceCode: NO-NUCS, domainCode: DEFAULT_DOMAIN,
serviceCatalogueCode: 50V000000000113S } }

 sendProcessDefaultRoute: {start: "*", end: toolbox-gateway, fail: ecp-endpoint, steps: [] }
 receiveProcessDefaultRoute: {start: toolbox-gateway, end: edx-default, fail: edx-errors, steps: [] }

There are three sections in this file: integrationChannels, components and routing:

13.6.1 Components
We are not interested in components – this section has no configuration, [] simply means an empty

array. The lack of interest in components configuration is deliberate: We don’t want to introduce

validations and transformations in the EDX, even though it works quite nice. The point is that from

the moment EDX takes on the responsibility of validating and transforming the messages, it becomes

more than a simple messenger – it becomes part of the business logic and fault handling. It is a NEX

recommendation to deliver the message unaltered from one BA to another. This will ensure less

trouble in the transport-layer and more flexibility for the BA. The cost is that each Business

Application must handle validation/transformation for themselves.

13.6.2 IntegrationChannels
IntegrationChannels define a set of "endpoints" which specifies where BA and EDX can place or pick

up a message. These "endpoints" are not the same kind explained in chapter 2, so please do not

confuse them. There are five types of channel endpoints:

• AMQP (Advanced Message Queue Protocol)

• FSSF (File System Shared Folders)

• FTP (File Transfer Protocol)

• Kafka (Statnett use this for internal publish/subscribe)

• WS (Web Service) – the default endpoint, not specifically configured

http://www.yamllint.com/

38

Each channel endpoint is placed in its own section. The channel endpoint must specify a direction

and a code. The direction can be

• "in": Location where BA place a message and EDX picks it up and delivers it to the receiver

• "out": Location where EDX place a message coming from a sender and BA then picks it up

The code must be a unique identifier of this channel endpoint. The codes in "out"-endpoints will be

used in routes, because routes define where to place messages when they're received from the

network (other endpoints).

Further important notes:

• You may create as many channel endpoints as you wish

• If you don't want any channel endpoints, simply type "[]" after the colon. (ex: sftpEndpoints:

[])

• We're using the naming convention inbox/outbox as seen from the BA's point of view, which

may cause some confusion with the direction (seen from EDX' point of view)

• Default redelivery-attempts is 10 in EDX, but we override this in our example to 1. The

reason is that redelivery seldom solves any issue, it just creates a lot of "noise" in the logs

and it lowers the message throughput.

• You should specify one in-endpoint for each BA. The reason is that you will have access to a

reply-endpoint for each BA. The reply-message (=technical ACK) can tell if the message has

safely arrived to the receiver's EDX. It can also tell you if you've used a non-existent EDX

address (receiverCode). However, the only way to know if the receiving BA has picked up the

message from the receiving EDX is to listen for a regular message from the other BA with

"business acknowledgement".

• The BA or some other consumer must consume the reply-endpoint. If not, then the reply-

queue will eventually fill up and the toolbox will stop working.

• When EDX receives a message from the network, it may fail to deliver it to the correct out-

endpoint. The reason could be that you have specified validation or that the message is to

big (can happen with Kafka) or something else. In those cases, the failed message will be

placed on a shared folder defined at the very last line in the config: fail: edx-errors (which in

turn points to the fssfEndpoint with code "edx-errors"). It will fall to the manager of the EDX

to resolve such issues.

13.6.2.1 AMQP-endpoint

The configuration suggested in the example shows 2 channel endpoints (total 3 queues) for a BA

named "ba1". One queue is for messages from ba1 to other recipients (outbox.ba1) with the

corresponding reply-queue (reply.ba1) mentioned above. Another for messages to ba1 from other

BAs in the network (inbox.ba1).

Queues are automatically created by EDX.

13.6.2.2 FSSF-endpoint

The configuration suggested in the example show 2 folders for a BA named "ba2", following the same

pattern as for AMQP. A reply folder is also specified in the same manner as for AMQP.

You must create this folder yourself and assign read/write/execute-privileges to EDX-Toolbox process

for these folders.

39

13.6.2.3 FTP-endpoint

The configuration suggested in the example shows the same setup as for AMQP and FSSF, now for BA

"ba3". What happens here is that EDX has an FTP/SFTP-client which connects to an FTP/SFTP-server.

The connectionParams are optional, but useful. The parameters sent directly the underlying apache-

component and are documented here:

https://camel.apache.org/components/latest/file-component.html

https://camel.apache.org/components/latest/ftp-component.html

By setting the tempPrefix-attribute to "../tmp" you ensure that the file is not moved into the correct

folder until it's completely written. The "../tmp"-folder must created (as ba3/tmp) and given proper

privileges.

13.6.2.4 Kafka-endpoint

EDX can both consume and produce from a Kafka topic, both with and without SSL. We've provided

both examples in the configuration.

Again, as for the FTP-endpoints, there are optional attributes which can be specified. These

attributes are specified here:

https://camel.apache.org/components/latest/kafka-component.html

NEX recommends "compressionCodec" and "maxRequestSize", because Kafka is usually not suited

for big messages (maxRequestSize is default 1MB). However, with compression, many text-messages

can be compressed up till 90%. Specify the maxRequestSize so that all messages are attempted to be

sent to Kafka and not rejected before EDX has tried to compress it.

13.6.3 Routes
The routes listed in the example show how each BA listens to a particular type of message,

determined by the filter (service or messagetype) and the end-attribute specification.

• Ba1 listens to messages with EDX-service code = FASIT

• Ba2 listens to messages with EDX-service code = MMS

• Ba1 and Ba2 listens to messages with EDX-service code = DK-MNA

• The serviceCatalogueCode must be the same SC code as in edx.properties.

• The serviceCode contains a Country-prefix if it is a cross-border service (may be provided by

a toolbox in another country than where your toolbox reside).

• Ba3 listens to messages with MessageType = EXT-EI-MAGASINDATA

• Ba4 listens to messages (through Kafka) with EDX-service code = NUCS

A few notes about this:

• We advise you to keep the routing as simple as possible.

• We advise you to avoid using MessageType in the routing. This is because the MessageType

is specified by the BA and it's better for the routing to be independent of changes in the BA.

• EDX-Service is used here as something like a "system-to-system" channel. This is defined

solely within EDX and makes it well suited to perform routing (the BA may change, but the

routing stays the same).

• You may have multiple filters, both Service, MessageType and even Sender. EDX will use the

routing rule which matches the message and is most specific. NEX advise against such rules,

it will be hard to maintain.

https://camel.apache.org/components/latest/file-component.html
https://camel.apache.org/components/latest/ftp-component.html
https://camel.apache.org/components/latest/kafka-component.html

40

At the end of the routing section you'll find the two default send/receive-routes. If the routes above

do not match anything, the message will go to the default channel endpoint, which we set to "edx-

default" which is a fileshare. If a problem occurs with the message routing (example: message to big

to send to Kafka), then EDX will send the message to the error channel endpoint defined in the

default-route. The error channel endpoint should be an FSSF-endpoint.

13.7 Change timezone of the toolbox
Change the timezone to CET on the Settings page, so the GUI will reflect correct timestamps. The file
logs will continue to be in UTC-time.

13.8 Troubleshooting

13.8.1 You have not received Service Catalogue (AKA network configuration)
Check settings on your EDX Dashboard (see screenshot above). You should see that the network

configuration from your TSO (see chapter 13.1), although other might also be present. If not, you

cannot send/receive messages from EDX. The reason may be because you cannot receive files – see

chapter 9.8.5. Another reason may be that your TSO has not updated the Service Catalogue with your

endpoint (this is a manual process at the TSO). Please notify your TSO.

13.8.2 You cannot send/receive on a particular service
If you can send messages unrelated to a specific service (ex-address: the endpoint-code for Service

Catalogue in chapter 13.1), but cannot send to the service you're supposed to be a part of (ex-

address: SERVICE-FASIT), then the error may be that the Service Catalogue has not been updated

properly (this is a manual process in the TSO). Please notify your TSO if you suspect this to be the

case. Also, please check the Services->Consumed menu on the EDX Dashboard: A list of services

should appear to show which services your endpoint may "consume".

41

14 Appendix

14.1 Connectivity Check
To properly monitor your endpoint send a "technical" test-message to a TSO-endpoint. This is
because you likely will communicate with a TSO on a NEM network. You should send such a message
every 5 minutes, but not more frequently. The result of this connectivity check should be picked up
by your alarm/monitoring system.

14.1.1 How-to I

The simplest way to do this is by using ekit, a tool developed in Java by Statnett.

• Download the tool from here: https://ediel.org/nordic-ecp-edx-group-nex/nex-statnett/

• Run ekit on your endpoint-host (other options are possible)

• Execute command like the one below (change ECP-code, specify correct user/pw)

java -jar ekit.jar CC <ECP-code> https://user:pw@localhost:8443

The output will something like this:

{"statustime": "2024-09-26 09:59:23", "timestamp": 1727337563, "connectivity_check_status": "OK",
"hostname": "A_HOST_NAME", "endpoint_code_checked": "ECP_CODE"}

To see other options for the CC tool of ekit, run:

java -jar ekit.jar CC

14.1.2 How-to II

Another approach is to make some script/program to access the HTTP-API yourself. The underlying
API is this:

PUT http://<host>:8443/ECP_MODULE/settings/connectivityCheck

Set HTTP header for "Content-Type" to "application/json"
Set HTTP body to {"receiver":"<ECP-code>","messageType":"TEST"}

However - your endpoint most likely a require login! Therefore, you must login first, then retrieve
xsrf-tokens and pass them back into the HTTP-URL shown above. You can study this by using a web
browser and look at how the ECP GUI is using the HTTP-API:

https://ediel.org/nordic-ecp-edx-group-nex/nex-statnett/
https://user:pw@localhost:8443

42

14.2 Administration of ECP-endpoint
The ECP-server offers a Settings-page which has some important features:

• Message Path: Check that you have a path defined for message type "*" (chapter 9.5),

otherwise you cannot receive any messages.

• Certificates: You can delete old certificates (Preferred = No, Valid to < Today). Old certificates

may make noise in your logs.

• Message Connectivity: Connectivity check is the simplest way to test if another ECP-Endpoint

is reachable. If no endpoint is reachable, the conclusion will usually be that your own

endpoint has lost connection to the (central) Broker. In that case see chapter 4.5 for

hostname and port number and try to telnet directly from the endpoint and from another

location to determine whether the problem is on Statnett's end or your own.

• Component Directory: Connectivity check to see if the CD (over port 443) is available. Data is

exchanged here every minute. If CD is offline for a long time (usually many hours or days) you

will not be allowed to send messages any more.

The ECP-server offers a Dashboard which shows

• Component Directory synchronization is ok (or not)

• Certificates are valid (or not)

• Messages are delivered (or not)

14.3 Monitoring & more advanced troubleshooting
Instead of expanding the installation doc more, a "troubleshoot/management" document has been

written and placed here: https://ediel.org/nordic-ecp-edx-group-nex/nex-statnett/

https://ediel.org/nordic-ecp-edx-group-nex/nex-statnett/

43

This document contains detailed information about the core concepts of ECP and how to

troubleshoot the most frequent issues. If you aspire to understand ECP and be able to do more

complicated fixes on ECP than a simple restart, you should read this.

